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Abstract. We prove that local observables of the set of GHZ operators for particles of spin higher
than 1

2 reduce to direct sums of the spin- 1
2 operators σx and σy and, therefore, no new contradictions

with local realism arise by considering them.

1. Introduction

The GHZ theorem [1] provides a powerful test of quantum non-locality, which can be confirmed
or refuted by the outcome of just one experiment [2]. Formulated for three spin- 1

2 particles [2,3],
the argument is based on the anti-commutative nature of the 2 × 2 spin operators σx and σy .
The values of the three mutually commuting observables

σax ⊗ σby ⊗ σ cy ≡ σax σ
b
y σ

c
y σ ay σ

b
x σ

c
y σ ay σ

b
y σ

c
x (1)

and their product, −σax σ bx σ cx , cannot be obtained, consistently, by making local assignments
to each of the individual spin operators,mIx ,mIy = ±1, I = a, b, c. This is not a contradiction
of quantum mechanics: the state |ψ〉 = 1√

2
(| ↑↑↑〉 − | ↓↓↓〉), for instance, is one of the

common eigenstates of the four operators, with eigenvalues λ1 = λ2 = λ3 = 1 and λ4 = −1,
respectively. |ψ〉 is a highly correlated (entangled) state of the three parties, which has no
defined value for σ Ix , σ

I
y .

In this letter we address the question of how to generalize the argument to particles of
higher spin and find that there are no non-trivial extensions other than direct sums of operators
that can be brought into the form σx , σy by means of local unitarity transformations. (For
odd-dimensional Hilbert spaces the direct sum is completed by a one-dimensional submatrix,
i.e. a c-number in the diagonal.) We give a proof for the cases of spin 1 and 3

2 . Similar problems
have been addressed in [4].

Let us look for observables A and B such that AB = ωBA (their hermiticity implies
that ω is at most a phase): this is a necessary condition for the commutator relations
[Aa1A

b
2A

c
3, B

a
1B

b
2B

c
3] = etc . . . = 0 to hold. As we shall see, all interesting cases correspond

to ω = −1. Without loss of generality, A can always be taken as diagonal, A = diag(λ1, λ2),
for the simplest case s = 1

2 . The above condition reads

AB − ωBA =
(
(1 − ω)λ1b11 (λ1 − ωλ2)b12

(λ2 − ωλ1)b
∗
12 (1 − ω)λ2b22

)
= 0. (2)
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If ω = 1, a solution with non-vanishing off-diagonal elements is allowed if ω2 = 1, i.e.
ω = −1. This leads to

A =
(

1 0
0 −1

)
B =

(
0 b

b∗ 0

)
(3)

which can always be transformed to σx and σy , by rotations and adequate normalization. These
are the operators of the example (1). For spin 1

2 the set of GHZ operators are in this sense
unique.

2. Spin 1

For higher spins the proof proceeds along the same lines. We find one case of interest, with
ω = −1,

A =
( 1

−1
−1

)
B =

( 0 b c

b∗ 0 0
c∗ 0 0

)
. (4)

In the basis where B is diagonal, A and B read as

A = −
( 1 0 0

0 0 1
0 1 0

)
B =

√
|b|2 + |c|2

( 0
1

−1

)
(5)

which proves the assertion in the case of spin 1, as a rotation around x brings B into the form
0 ⊕ σy , while A is left as 1 ⊕ σx , up to normalizations.

3. Spin 3
2

For spin 3
2 , in addition to cases that reduce straightforwardly to those of lower spins, we find

A =




1
−1

−1
−1


 B =




0 a b c

a∗ 0 0 0
b∗ 0 0 0
c∗ 0 0 0


 . (6)

In the basis where B is diagonal, A and B read as

A = −




0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1


 B =

√
|a|2 + |b|2 + |c|2




1
−1

0
0


 (7)

which is again diagonal in two 2 × 2 blocks.
The last case corresponds to

A =




1
−1

1
−1


 B =




0 a 0 b

a∗ 0 c∗ 0
0 c 0 d

b∗ 0 d∗ 0


 . (8)

The following list of unitary transformations brings these matrices to the desired form.

(a) With

F =




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


 (9)
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F † = F = F−1, we find

A′ = FAF =
(
I

−I
)

B ′ = FBF =
( B

B†

)
(10)

where

B =
(
a b

c d

)
.

(b) A unitary transformation of the form U =
(
U1

U2

)
leaves A′ invariant and allows us

to diagonalize B

A′′ = A′ B ′′ = UB ′U † =
(

U1BU †
2

(U1BU †
2 )

†

)
=




m 0
0 n

m∗ 0
0 n∗


 . (11)

We have used the result that the generic matrix B can be brought to a diagonal form with two
unitary matrices U1 and U2.

(c) Finally, acting with F again,

A′′′ = A B ′′′ =




0 m

m∗ 0
0 n

n∗ 0


 (12)

which completes the proof.

4. Conclusions

We conclude that the equation AB = ωBA is very restrictive on ω and on the possible forms
of A and B; as the Hilbert space dimension increases, with increasing spin, all its solutions
for ω = 1 have ω = −1 and are essentially direct sums of the two-dimensional σx and σy . In
this sense there are no solutions that could, in principle, enrich the possibilities opened by the
GHZ theorem.
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